INTRODUCTION to ION BEAM TECHNIQUES

Marko Karlušić
Ruđer Bošković Institute, Zagreb
INTRODUCTION to ION BEAM ANALYSIS (IBA) TECHNIQUES (a.k.a. NUCLEAR ANALYTICAL METHODS)

Marko Karlušić
Ruđer Bošković Institute, Zagreb

• Electrostatic accelerators
• Ion beam analysis with examples
 • RBS
 • ERDA
 • PIXE
• Nuclear microprobe
• Materials modification
ELECTROSTATIC ACCELERATORS
The first ion probe – Rutherford experiment

ERNEST RUTHERFORD
• 1909 – α-particle scattering experiment on gold foil
• 1911 – theory of nuclear atom
• had called for "a million volts in a soapbox" to advance nuclear research!
Working in a vacant room at Rutherford's Cavendish Laboratory at Cambridge University, Englishman Cockcroft and Irishman Walton used spare parts to build the world's first nuclear-particle accelerator in 1929.

- high voltage obtained by cascade voltage multiplier
- 1932 the first artificial nuclear reaction $p + ^7\text{Li} \rightarrow ^4\text{He} + ^4\text{He}$
- Nobel prize 1951
ELECTROSTATIC ACCELERATORS

Robert J. Van de Graaff

Princeton University; MIT Boston
- 1929 80 kV
- 1931 7 MV
- after the WWII he founded HVEC – High Voltage Engineering Corporation
ELECTROSTATIC ACCELERATORS

Luis W. Alvares

- WWII – Manhattan project
- Berkeley 1951 – concept of tandem accelerator
- Nobel prize in physics 1968 (bubble chamber)
- Alvarez Hypothesis 1980
Aprox. 20,000 accelerators:

- 90% medicine & industry
 - Medicine
 - Diagnostics (isotope production)
 - Radiation treatment
 - Industry
 - Ion implanters
 - Electron accelerators for radiation processing (e.g. polymer crosslinking, sterilisation...)
- 10% research and education
 - Large scale facilities (e.g. CERN, GSI, etc.)
 - Synchrotron light sources
 - Cyclotrons
 - Electrostatic accelerators (including implanters)
ELECTROSTATIC ACCELERATORS
RBI-AF, Zagreb, Croatia

- 100 keV – 40 MeV
- p, He, Li, C, O, Si, Cl, I, Au....
RBI-AF, Zagreb, Croatia

1.0 MV HVE Tandetron accelerator

6.0 MV EN Tandem Van de Graaff accelerator

PIXE/RBS

In-air PIXE

Dual-beam irradiation

IAEA beam line

TOF ERDA

PIXE crystal spectrometer

Nuclear reactions

Ion microprobe
ION BEAM ANALYSIS

Elastic scattering of incoming ion → Rutherford backscattering spectrometry - RBS

Nuclear reaction → emission of reaction product (particle; gamma ray) → PIGE and NRA techniques

Energy loss of incoming ions → Scanning transmission ion microscopy - STIM

Inner shell ionization → emission of x-ray → PIXE spectroscopy

Elastic scattering → recoil of target nuclei → ERDA depth profiling technique
Non-destructive techniques (most of the time...)

1 BARN (b) = 100 fm²

1 fm = 10⁻¹⁵ m

typical size of the nucleus
Rutherford Backscattering Spectrometry

Elastic scattering of incoming ion → Rutherford backscattering spectrometry - RBS

Nuclear reaction → emission of reaction product (particle; gamma ray) → PIGE and NRA techniques

Energy loss of incoming ions → Scanning transmission ion microscopy - STIM

Inner shell ionization → emission of x-ray → PIXE spectroscopy

Elastic scattering → recoil of target nuclei → ERDA depth profiling technique
RUTHERFORD BACKSCATTERING SPECTROMETRY

For a given scattering angle Θ, known projectile energy E_{inc} and mass M_1 (e.g. 2 MeV α), E_{sc} Can be measured and therefore unknown mass M_2 can be determined

$$K = \frac{E_{\text{scattered}}}{E_{\text{incident}}} = \left[\frac{\left(1 - \left(\frac{M_1 \sin \theta}{M_2}\right)^2\right)^{1/2} + \frac{M_1 \cos \theta}{M_2}}{1 + \frac{M_1}{M_2}}\right]^2$$

E Ion energy
M_1 Mass of incident ion
M_2 Mass of target atom
θ Scattering angle
RUTHERFORD BACKSCATTERING SPECTROMETRY

cross section

\[\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E} \right)^2 \cdot \frac{4}{\sin^4 \theta} \cdot \frac{1}{\sqrt{1 - \left(\frac{M_1 \sin \theta}{M_2} \right)^2}} \left(\frac{1}{\sqrt{1 - \left(\frac{M_1 \sin \theta}{M_2} \right)^2}} + \cos \theta \right)^2 \]

- Z_1: Atomic number of incident ion
- Z_2: Atomic number of target atom
- E: Energy of incident ion
- M_1: Mass of incident ion
- M_2: Mass of target atom
- θ: Angle of incidence

Graph showing relative yield for different elements at 2 MeV.
Proton beam (2 MeV)
Detector positioned at $\Theta=165^0$,
Sample: thin TiO$_2$ film on Si substrate
TaSi layers of 590 and 230 nm deposited on Si substrate as seen by 2 MeV alpha RBS.
Sample:
thin film a-Si solar cell
(amorphous silicon)

5.1 MeV Li$^{2+}$ beam
$\Theta=170^\circ$
In situ RBS:
Ion beam: 2 MeV Li7
Sample: AlCuFe thin film
Observation of layer intermixing
Effect of high temperature deposition on CoSi2 phase formation
- Identification of phase transition from CoSi to CoSi$_2$
ERDA - ELASTIC RECOIL DETECTION ANALYSIS

Elastic scattering of incoming ion → Rutherford backscattering spectrometry - RBS

Nuclear reaction → emission of reaction product (particle; gamma ray) → PIGE and NRA techniques

Energy loss of incoming ions → Scanning transmission ion microscopy - STIM

Inner shell ionization → emission of x-ray → PIXE spectroscopy

Elastic scattering → recoil of target nuclei → ERDA depth profiling technique
ERDA - ELASTIC RECOIL DETECTION ANALYSIS

Geometry: transmission (problems due to energy straggling) or reflection (small sampling depth)

Experimental setup:

Stopping foil – by selection of appropriate thickness, system is optimized for one particular element (e.g. Hydrogen using He ion beam)

ΔE, E detector: - scattered and recoiled particles are discriminated by different dE/dx! (energy straggling ?)

TOF, E detector:
- scattered and recoiled particles are discriminated by measurement of time of flight (with minimal straggling) – best depth resolution

+ Magnetic spectrometer (expensive)
TOF - ERDA

Acc. grid

DLC
ion

Mirror grid

MCP

$\Delta t \sim 200$ ps
Heavy ion beam – e.g. 20 MeV Iodine ions
- sensitivity 10^{15} /cm2
- 5 nm depth resolution, up to 500 nm probe depth
- all elements are resolved

Sample:
20 nm multilayers TiN/AlN
Corrosion of ancient glass found at the fort Sokol (close to Dubrovnik airport)
PARTICLE INDUCED X-RAY EMISSION SPECTROSCOPY

Elastic scattering of incoming ion → Rutherford backscattering spectrometry - RBS

Nuclear reaction → emission of reaction product (particle; gamma ray) → PIGE and NRA techniques

Energy loss of incoming ions → Scanning transmission ion microscopy - STIM

Inner shell ionization → emission of x-ray → PIXE spectroscopy

Elastic scattering → recoil of target nuclei → ERDA depth profiling technique
Simple quantification for thin targets:
\[Y_i = \frac{Q}{e} C_i \Omega \varepsilon \sigma_i \]
- \(Q/e \) – fluence
- \(\Omega \varepsilon \) – detector solid angle and efficiency
- \(\sigma_i \) – production cross section
- \(\sigma_i = \sigma_{ii} \omega \), where \(\sigma_{ii} \) is ionization cross section and \(\omega \) fluorescence yield
For thick targets, quantification is becoming more complicated!!

\[Y_i = \frac{Q}{e} \int_{0}^{d} c(x) \sigma_i(E(x)) e^{-\mu x / \sin \phi} \, dx \]

Yield depends on composition due to ion stopping & x-ray absorption:
a) Iterative procedure, or
b) Matrix composition from other techniques (RBS)!!
PIXE ANALYSIS

air pollution monitoring

Nucleopore Track-Etched Membrane

Figure 2. Representative PIXE spectra of the fine airborne particulate matter collected in the sampling site.
PIXE Analysis

Air Pollution Monitoring

<table>
<thead>
<tr>
<th>Element</th>
<th>MDL</th>
<th>No01</th>
<th>No02</th>
<th>No03</th>
<th>No04</th>
<th>No05</th>
<th>No06</th>
<th>No07</th>
<th>No08</th>
<th>No09</th>
<th>No10</th>
<th>No11</th>
<th>No12</th>
<th>No13</th>
<th>No14</th>
<th>No15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>5.3</td>
<td>29.2</td>
<td>33.2</td>
<td>62.9</td>
<td>17.5</td>
<td>34.9</td>
<td>75.0</td>
<td>27.2</td>
<td>115.8</td>
<td>24.1</td>
<td>35.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>2.8</td>
<td>4.0</td>
<td>3.6</td>
<td>6.8</td>
<td>7.0</td>
<td>6.7</td>
<td>9.1</td>
<td>2.7</td>
<td>6.0</td>
<td>7.9</td>
<td>28.0</td>
<td>7.2</td>
<td>8.7</td>
<td>7.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2.0</td>
<td>2.0</td>
<td>2.6</td>
<td>2.9</td>
<td>4.3</td>
<td>3.9</td>
<td>3.2</td>
<td>2.9</td>
<td>4.3</td>
<td>8.2</td>
<td>15.7</td>
<td>5.3</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Mn</td>
<td>1.3</td>
<td>6.2</td>
<td>7.3</td>
<td>11.0</td>
<td>6.7</td>
<td>9.1</td>
<td>2.7</td>
<td>6.0</td>
<td>7.9</td>
<td>28.0</td>
<td>7.2</td>
<td>8.7</td>
<td>7.0</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.9</td>
<td>72.5</td>
<td>119.6</td>
<td>154.9</td>
<td>90.7</td>
<td>140.8</td>
<td>50.9</td>
<td>102.3</td>
<td>152.9</td>
<td>239.2</td>
<td>196.1</td>
<td>98.5</td>
<td>105.8</td>
<td>86.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.8</td>
<td>2.0</td>
<td>2.4</td>
<td>2.5</td>
<td>10.5</td>
<td>14.3</td>
<td>31.8</td>
<td>59.5</td>
<td>95.7</td>
<td>59.5</td>
<td>23.8</td>
<td>12.6</td>
<td>98.2</td>
<td>15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.6</td>
<td>22.2</td>
<td>10.7</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.8</td>
<td>28.9</td>
<td>18.1</td>
<td>15.7</td>
<td>19.5</td>
<td>64.5</td>
<td>25.9</td>
<td>34.9</td>
<td>13.0</td>
<td>62.1</td>
<td>121.2</td>
<td>75.7</td>
<td>25.2</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>0.8</td>
<td>5.7</td>
<td>4.8</td>
<td>5.9</td>
<td>0.8</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Rb</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Sr</td>
<td>1.1</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>2.7</td>
<td>29.4</td>
<td>20.0</td>
<td>15.4</td>
<td>12.7</td>
<td>60.5</td>
<td>14.0</td>
<td>19.5</td>
<td>7.4</td>
<td>25.2</td>
<td>36.6</td>
<td>49.4</td>
<td>129.8</td>
<td>55.1</td>
<td>16.9</td>
<td>10.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>MDL</th>
<th>No16</th>
<th>No17</th>
<th>No18</th>
<th>No19</th>
<th>No20</th>
<th>No21</th>
<th>No22</th>
<th>No23</th>
<th>No24</th>
<th>No25</th>
<th>No26</th>
<th>No27</th>
<th>No28</th>
<th>No29</th>
<th>No30</th>
<th>No31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>31.9</td>
<td>99.9</td>
<td>49.0</td>
<td>55.0</td>
<td>78.8</td>
<td>98.6</td>
<td>42.4</td>
<td>31.8</td>
<td>59.5</td>
<td>95.7</td>
<td>59.5</td>
<td>23.8</td>
<td>12.6</td>
<td>98.2</td>
<td>15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>3.5</td>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>8.8</td>
<td>5.9</td>
<td>5.6</td>
<td>5.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>4.2</td>
<td>7.9</td>
<td>5.3</td>
<td>8.2</td>
<td>5.5</td>
<td>11.6</td>
<td>5.2</td>
<td>3.5</td>
<td>1.7</td>
<td>1.7</td>
<td>2.5</td>
<td>3.2</td>
<td>3.9</td>
<td>4.1</td>
<td>5.2</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>85.5</td>
<td>129.2</td>
<td>69.7</td>
<td>120.5</td>
<td>81.1</td>
<td>184.3</td>
<td>80.4</td>
<td>56.8</td>
<td>17.9</td>
<td>32.1</td>
<td>31.8</td>
<td>42.2</td>
<td>44.7</td>
<td>42.0</td>
<td>60.1</td>
<td>82.6</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>3.8</td>
<td>4.0</td>
<td>3.8</td>
<td>2.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>5.3</td>
<td>12.1</td>
<td>5.3</td>
<td>7.7</td>
<td>6.3</td>
<td>9.2</td>
<td>4.8</td>
<td>3.2</td>
<td>0.9</td>
<td>1.9</td>
<td>2.0</td>
<td>3.5</td>
<td>2.6</td>
<td>4.9</td>
<td>9.7</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>18.4</td>
<td>53.9</td>
<td>45.4</td>
<td>35.7</td>
<td>31.0</td>
<td>36.1</td>
<td>17.4</td>
<td>14.3</td>
<td>10.6</td>
<td>23.5</td>
<td>30.2</td>
<td>28.7</td>
<td>37.9</td>
<td>30.6</td>
<td>39.7</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>1.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>1.1</td>
<td>5.2</td>
<td>2.5</td>
<td>3.0</td>
<td>2.4</td>
<td>4.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.7</td>
<td>0.9</td>
<td>2.3</td>
<td>1.9</td>
<td>0.8</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>11.1</td>
<td>27.6</td>
<td>48.8</td>
<td>28.3</td>
<td>18.4</td>
<td>20.9</td>
<td>8.2</td>
<td>10.6</td>
<td>4.2</td>
<td>10.6</td>
<td>9.9</td>
<td>11.9</td>
<td>13.6</td>
<td>10.7</td>
<td>21.3</td>
<td>12.8</td>
<td></td>
</tr>
</tbody>
</table>
PIXE ANALYSIS
air pollution monitoring
In air PIXE ANALYSIS

<table>
<thead>
<tr>
<th>ion/energy</th>
<th>range in air (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, 1 MeV</td>
<td>23.25</td>
</tr>
<tr>
<td>p, 2 MeV</td>
<td>71.25</td>
</tr>
<tr>
<td>p, 3 MeV</td>
<td>140.52</td>
</tr>
<tr>
<td>α, 1 MeV</td>
<td>5.21</td>
</tr>
<tr>
<td>α, 2 MeV</td>
<td>10.24</td>
</tr>
<tr>
<td>12C, 3 MeV</td>
<td>5.21</td>
</tr>
<tr>
<td>28Si, 6 MeV</td>
<td>6.27</td>
</tr>
</tbody>
</table>
Analysis of helmet

<table>
<thead>
<tr>
<th>Spektar</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>K</th>
<th>Ca</th>
<th>Fe</th>
<th>Cu</th>
<th>Sn</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>705231</td>
<td>1</td>
<td></td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td>0.9</td>
<td>73.8</td>
<td></td>
<td>17</td>
<td>3.2</td>
</tr>
<tr>
<td>705232</td>
<td>1.6</td>
<td></td>
<td>1</td>
<td></td>
<td>2.1</td>
<td>57.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>705233</td>
<td>6.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>71.2</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>705234</td>
<td>1.9</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td>5.6</td>
<td>78.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>705235</td>
<td>5.3</td>
<td>9.0</td>
<td>2.7</td>
<td></td>
<td></td>
<td>1.4</td>
<td>6.4</td>
<td>29.0</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>702356</td>
<td>1.4</td>
<td>1.6</td>
<td>0.2</td>
<td>0.8</td>
<td>5.2</td>
<td>1.4</td>
<td>66.5</td>
<td>25.0</td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>
Simple external beam setup:
- Robust Al foil exit window
- No additional vacuum pump required
- Classical Si(Li) detector
- Computer controlled XYZ table

X-ray detector

ION BEAM
(1 mm diameter)
Analysis of technology used to make Roman silver plate (found recently in town Vinkovci, Croatia)

Proton beam collimated to $\phi < 1$ mm; Scanned area 3 x 3 cm
Why we need microbeams?

- Analysis of microscopic samples!
- Imaging of elemental composition!
Available configurations at RBI:
Doublet (Dx = 11 Dy = 67)
Triplet (Dx = 30 Dy = 102)
Quintuplet (Dx=90 Dy=110)
NUCLEAR MICROPROBE

Load lock

Beam in

XYZ translator

Sample holder
Analysis of single airparticulates for identification of sources of pollution: Na, Cl – sea salt
Seawater pollution influence on sea-urchin (microbeam PIXE imaging)
PIXE and STIM maps of a skin section treated with ZnO nanoparticles
Z. Sziksai et al., NIM B 269 (2011) 2278
Painting by Hans Georg Geiger from the St. Mihael Ch., Gracani
The **light red** layer exhibits high Hg and S concentrations (HgS – cinnabar), while the **dark red** layer beneath shows presence of Pb, Al, Ca, but without Hg (either *minium*, or *carmine*).

2D element distribution of the pigment cross section sample taken from the red area of the painting.
OTHER IBA TECHNIQUES

- Elastic scattering of incoming ion → Rutherford backscattering spectrometry - RBS
- Inner shell ionization → emission of x-ray → PIXE spectroscopy
- Nuclear reaction → emission of reaction product (particle; gamma ray) → PIGE and NRA techniques
- Energy loss of incoming ions → Scanning transmission ion microscopy - STIM
- Elastic scattering → recoil of target nuclei → ERDA depth profiling technique
OTHER IBA TECHNIQUES

- RBS in channeling (RBS/c)
- MeV-SIMS
- Secondary electrons SE imaging
- Ion beam induced charge (IBIC)
- Ionoluminescence (IL)
- P-p & C-C scattering
- High resolution HR-PIXE
- Elastic scattering of incoming ion → Rutherford backscattering spectrometry - RBS
- Nuclear reaction → emission of reaction product (particle; gamma ray) → PIGE and NRA techniques
- Energy loss of incoming ions → Scanning transmission ion microscopy - STIM
- Inner shell ionization → emission of x-ray → PIXE spectroscopy
- Elastic scattering → recoil of target nuclei → ERDA depth profiling technique
STIM & MeV-SIMS

Ion beam: 9 MeV O$^{4+}$, image size: 85x85 µm2 (≈300 nm/pixel)

DUAL BEAM FOR in situ RBS/C ANALYSIS

5 MeV Si \rightarrow SiO$_2$ quartz
RBS/c: 1 MeV protons

M. Karlušić et al., unpublished
MATERIALS MODIFICATION USING ION BEAMS

Ion implantation:
- a) Injection of foreign atoms
- b) Displacement of atoms

Single ion tracks:
Fast and heavy ions (~MeV/amu) create latent tracks of damage used as a template in nanostructuring

Irradiation with protons:
Produce homogeneous radiation damage that can be used for lithography, defect engineering, etc..
ION ENERGY LOSS

Energy loss of Xe ion in silicon (SRIM)

\[-\frac{dE}{dx} = \frac{4\pi n z^2}{m_e v^2} \cdot \left(\frac{e^2}{4\pi \varepsilon_0}\right)^2 \cdot \left[\ln \left(\frac{2m_e v^2}{I}\right)\right]\]

Bethe – Bloch formula
APPLICATIONS
RADIATION DAMAGE IN CAF$_2$

- Multitechnique approach to analyse nanoscale radiation damage!

TEM, RBS/c, AFM & ERDA

RIPPLES BY GRAZING INCIDENCE SHI

AFM & GISAXS

23 MeV I
15 MeV Si
6 MeV Si
3 MeV O
ION BEAM ASSISTED ORDERING OF QDs

In situ ToF-ERDA ANALYSIS OF ION TRACKS

AFM & ERDA

PERFORATING GRAPHENE

AFM & Raman

O. Ochedowski et al., Nanotechnology (2015)

GANIL
84 MeV Ta

RBI
23 MeV I

15 MeV Si
CONDUCTIVE CHANNELS IN DIAMOND

Implantation with three-dimensional masking

After thermal annealing (900 °C) damaged regions are becoming conductive
Problem: How to make reliable connection?

Si pin diode