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Up to 1985 the only two allotropic

carb0| Otropes form of carbon were known:

graphite and diamond.

1985 - discovery of C,, (Smalley,
Kroto and Curl) and then of higher
fullerenes and nanotubes (lijima
1991).

Very promising systems:

A wide range of transport
properties, from insulators to high-
temperature superconductors.
Nanotubes can be used for novel
electronic devices.

Their marked mechanical properties
make fullerenes and nanotubes
serious competitors to composite
materials.

Nanotechnology: A new mantra of the 215t century,
the next industrial revolution

Fullerenes and Nanotubes are Fundamental Building Blocks



Buckminsterfullerene - Cg,
The 1996 Nobel Prize for Chemistry ture

JOURNAL OF SCIENCE

“An excellent account of the story’ .. i
ilip Ball, Nature 2 “Vary well written and rewarding ... an sxcellent account” —NATURE
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A fascinating new group
of carbon molecules

Fullerenes: a whole
new ball game

double bond




Why are nanotube important?

They hold substantial promise
for applications as super-strong
fibers and in novel electronic

devices TREEEE

_E



Carbon Nanotubes (CNTSs)

CNT 1s a tubular form of carbon with diameter as small as < 1 nm.
Length: few nm to microns.

CNT is configurationally equivalent to a two dimensional graphene
sheet rolled into a tube.

CNTs can be single-wall or multi-walls.
Open-end or Close-end.

CNTs exhibit extraordinary mechanical
properties: Young s modulus over 1 Tera
Pascal, as stiff as diamond, and tensile
strength ~ 200 GPa.

CNTs can be metallic or semiconducting
depending on the way the graphene sheet is
rolled-up.
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Carbon Nanotubes (CNTSs)
TEM images of a variety of MWCNTSs

S. Tijima, Nature 354, 56 (1991)



Carbon Nanotubes (CNTs)

SWCNTs are typically aligned in triangular lattices forming bundles
(lattice constant = 1.7 nm; intertube separation # 0.32 nm)
Sets of bundles form ropes
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CNT diameter and chirality are
defined by a vector perpendicular
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@.._._..’...-.:u% All possible tubes are obtained by

spanning the vector between the
armchair and zigzag directions.



large variety of chiral angles Distribution chiral angles / diameters
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Large variety in chiral angle:
0°< ¢ <30°

Diameter d around 1.2-1.5 nm

Scanning Tunneling Microscope
(STM) allows the visualization of
CNT at the atomic scale.




Nanotube . :anipulation

T —T—— -

single-wall carbon nanotubes on SiO,

o B e N }

The AFM and STM tips can move, bend, shift and
collect nanotubes, like the fork does with
spaghetti




CNT Properties

The strongest and most flexible molecular
material because of C-C covalent bonding
and seamless hexagonal network architecture

Young' s modulus of over 1 TPa vs 70 GPa for

Aluminum, 700 GPA for C-fiber

- strength to weight ratio 500 time > for Al;
similar improvements over steel and
titanium; one order of magnitude
improvement over graphite/epoxy

Maximum strain 10-30% much higher than any
material

Thermal conductivity ~ 3000 W/mK in the axial
direction with small values in the radial direction




 Electrical conductivity six orders of magnitude
higher than copper

« CNT can be metallic or semiconducting
depending on chirality and diameter

- ‘tunable’ bandgap

- electronic properties can be tailored through
application of external magnetic field, mechanical
deformation, absorption of gases, doping ...

» Very high current carrying capacity
» Excellent field emitter; high aspect ratio
and small tip radius of curvature are

1deal for field emission

e (Can be functionalized

scaled bandgap
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SWCNTs electronic structure:
summary

@ Armchair (n,n) — metals
@ Zig-Zag (n,0) — mostly
Helical Symmetry Sem I(.:OI’IdUC'[O &

’ ‘ @ Chiral (n,m) nm — mostly
semiconductors and
Insulators
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CNT Applications: Electronics

CNT quantum wire interconnects Novel Data Sto rage Syste m

Diodes, transistors and flip-flop for
computing

. Diamond or silicon ' : Potential Storage:
Capa01t0rs (111) surface ‘s 35 o 3 10" bytes/cm?
X Y : (vs. 10, state of the art)

Data Storage

Field emitters for instrumentation s 2“;

H for "0"

Flat panel displays ‘ ‘ n! ﬁ‘! s
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Challenges TN e i

THz oscillators
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 Control of diameter, chirality S i:'_jﬁ;;:

* Doping, contacts ok
» Novel architectures (not CMOS based!)

Development of mnexpensive manufacturing processes



CNT welding: w 1ections, diodes ...

Model I

(D ele e >°e’ 1
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Model IT

Min Ouyang et al,
Science 291, 97 (2001)
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A memory.ele 1e bucky shuttle

20 ps
switching

Energy [eV]

A dream?

No, CNT can

be filled with

fullerenes: the

CNT-peapods
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J-M. Bonard et al,
Applied Phys. Lett. 73, 918 (1998)
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CNT Applications: Structural, Mechanical

.
 High strength composites

» (Cables, tethers, beams
» Multifunctional materials
* Functionalize and use as polymer back bone
- plastics with enhanced properties like "blow
molded steel
» Heat exchangers, radiators, thermal barriers, cryo-tanks

* Radiation shielding

 Filter membranes, supports

* Body armor, space suits

Challenges

Control of properties, characterization

Dispersion of CNT homogeneously in host materials
Large scale production

Application development




CNT Applications:
Sensors, Mol. Mechanics, Biology

 CNT based microscopy: AFM, STM...

Challenges

« Nanotube sensors: force, pressure, chemical...

Controlled growth
Functionalization with

probe molecules, robustness
Integration, signal processing
Fabrication techniques

* Biosensors for Astrobiology

* Molecular gears, motors, actuators

« Batteries, Fuel Cells: H,, Li storage

» Nanoscale reactors, 1on channels
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CNT.as-che vical sensors

@Advantages
@ High adsorption surface area
@Changing electrical properties at room temp.
@Detect very small concentrations (ppm) of O,, NO,, NH,

@Semiconducting nanotube
@Depletion or accumulation of carriers dependlng on species
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CNT Synthesis

« CNT has been grown by laser ablation
(pioneering at Rice) and carbon arc process
(NEC, Japan) - early 90s.

- SWNT, high purity, purification methods

« CVD is ideal for patterned growth
(electronics, sensor applications)

- Well known technique from
microelectronics

- Hydrocarbon feedstock

- Growth needs catalyst
(transition metal)

- Multiwall tubes at
500-800° deg. C.

- Numerous parameters
influence CNT growth



CNT growth by arc-discharge

—L

ﬁe-gas N

* Carbon atoms from graphite
—  electrodes are sublimated in a
plasma.

- High-quality SWCNTs and
MWCNTSs in gram quantities.

- Need of a metal (Ni, Co,Fe,..)
catalyst and purification.

‘Disordered CNT tangles, amorphous
carbon (a-C), fullerenes, etc...




NT growth by laser-ablation

furnace at 1,200° Celsius

water-cooled
ceppar collectar

argon gas

nanotube “lell” growing
along tip of collector

graphite target

i Neocymium-yinum-
S dlurminum-garnet [aser

Massweproducflon (gr' scale) of high-quality SWCNTs
assembled in bundles: disordered material, a
Metal catalysts (Ni, Co, Fe..) in the graphite ‘rar'ge'r

Purification needed



CNT growth by (PE)CVD

Computer Flow Controllers & Vents

Control [

Buffer
Volume

Source Gases

Load —
Lock (—( )

Valve

Safety Enclosure

Reactor

Scrubber

OO0

Toxic Gas
Alarm System




Purification Method for SWCNTSs

After removing fullerenes via appropriate solvents
(typically Toluene), several treatments of the as-grown
material in a nitric/sulfuric acid solution to remove the
metal catalyst species. Washing in de-ionized water and
methanol refluxes. Oxidation in a mixture of sulfuric acid
and hydrogen peroxide. Washing in NaOH reflux.
SWCNTs can be dissolved/dispersed in NaOH aqueous
solutions containing sodium-laureth-sulfate (Triton X-100
surfactant): filtration gives SWCNT bucky-papers

N -f.:

wow Jieliuetal, 5 48 /

Y Science 280, 1253 (1998) T s 71 1Y )
e y 5




Purified material

SWCNTs bundles
in a bucky-paper

1,000,000

Fullerenes and SWCNTs 1n solution
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Nano-Patterning of Aligned MWCNTSs

C. Bower et al,, Appl. Phys. Lett. 77, 830 (2000)




Grain size (nm)
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RF power density (W/icm?)
Controlling the diameter,
growth rate, and density of
vertically aligned CNTs
sythesized via PECVD

Young Chul Choi et al,
Appl. Phys. Lett. 76, 2367 (2000)
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Base growth mode Tip growth mode  Chemical Vapor
H Deposition

C. Bower e7‘ /.,
Catalyst Support Appl. Phys. Lett. 77, 2767 (2000)



Nanotubes @ ELETTRA:
Research Focus

Nanotubes Who

- In situ growth of CNT (with and without ENEA, ELETTRA & TASC-INFM
catalyst)

- Controlled, patterned growth of CNT Lilit INFM, ELETTRA) & TASC-INFM

- Interaction/storage of gases in nanotubes
bundles (oxygen, hydrogen, NO,,HNO;...) ELETTRA (SuperESCA)

- Real time and nano-spectroscopy studies of
growth and electronic properties ELETTRA(SuperESCA & ESCAmicroscopy)
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Nanoelectronics and Computing Roadmap
Impact on Space Transportation, Space Science and Earth Science

2002 2005 2010

Nano-lectronic
components

Ultra high density
storage

Biomimetic .
radiation resistant
molecular computing

Compute Capacity



Nano-Materials Roadmap
Impact on Space Transportation, Space Science and HEDS

2002 2005 | 2010 2015

Generation 3R
HEDS Habitats
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