Istruzioni

La cartella contiene:

- Il pdf "Note per gli studenti", contenente la presentazione effettuata la mattina dell'esperimento. Le slide includono i miei contatti.
- Due files excel contenenti gli esercizi fatti dagli studenti nell'ultima parte della visita qui ad Elettra
- Una cartella "spettri FTIR" contenente gli spettri I e lo FTIR di trealosio, albumina e DNA
- Una cartella "Raman studenti 29" (o "Raman studenti 30") contenente tutti gli spettri Raman acquisiti dai ragazzi durante la giornata, con aggiunta di alcuni spettri che non sono stati acquisiti per mancanza di tempo

Riduzione dati FTIR

Per ogni camione misurato avete due file di testo, uno con la dicitura I e l'altro con la dicitura Io nel nome (esempio RSC_I0_Albumina.0011.dpt e SSC_I_Albumina.0011.dpt).

ATTENZIONE: in questi files il separatore dei decimali è il punto. Nel caso il vostro "Office" abbia il separatore decimale con la virgola, potete fare una delle seguenti cose:

- 1) modificare le impostazioni di office o di windows inserendo il punto come separatore dei decimali
- 2) Aprire con "blocco note" il file di testo, sostituire tutti i punti con le virgole, salvare il file con un nome diverso. Aprire poi quest'ultimo con excel

Riporto qui l'esempio dell'albumina, fate lo stesso con gli altri 2 campioni. Aprite il file *RSC_I0_Albumina.0011.dpt* trascinandolo sulla finestra di excel. Fate lo stesso con il file *SSC_I_Albumina.0011.dpt*. Ciascun file contiene 2 colonne, la prima relativa all'asse x (wavenumber in cm-1), la seconda relativa all'asse y. Copiate in una nuova scheda o in un nuovo file excel la colonna dell'asse x (è uguale in entrambi i files), la colonna corrispondente all'intensità I e la colonna corrispondente all'intensità I0. In una colonna calcolate Abs=-Log10(I/I0). Graficate il tutto. Fate lo stesso con DNA e trealosio.

Lista file Raman:

Per ogni campione misurato avete il file di testo nomefile_1, nomefile_2 ... monefile_n. Ciascuno di questi file contiene 2 colonne, la prima corrispondente all'asse x (non calibrato) nella scala dei cm-1, la seconda all'asse y.

ATTENZIONE: come per i dati FTIR questi files il separatore dei decimali è il punto. Nel caso il vostro "Office" abbia il separatore decimale con la virgola, potete fare una delle seguenti cose:

- 3) modificare le impostazioni di office o di windows inserendo il punto come separatore dei decimali
- 4) Aprire con "blocco note" il file di testo, sostituire tutti i punti con le virgole, salvare il file con un nome diverso. Aprire poi quest'ultimo con excel

Raman, calibrazione scala x

La prima operazione da fare, come abbiamo fatto qui da noi, è la calibrazione dell'asse x. Per effettuare questa operazione si deve importare su excel il file "ciloesano" (1500 o 3000, dipende da quali dati stiamo trattando), fare un grafico e identificare la posizione del massimo dei picchi, Confrontarli con la seguente figura.

Sample	Mean Frequency	Standard Deviation	Number of Points	s Relative Intensity
vclohexane	384.1	0.78	6	2
1	426.3	0.41	6	3
	801.3	0.96	6	95
	1028.3	0.45	6	15
	1157.6	0.94	6	6
	1266.4	0.58	6	14
	1444.4	0.30	6	12
	2664.4	0.42	6	8
	2852.9	0.32	6	100
	2923.8	0.36	6	58
	2020.2	0.61	1	
E+2 100 90 - 80 -	2736.3 	0.31 Cyclohe:	cane	67 8:2588
E+2 100 90 70 60	2736.3	0.31 Cyclohe:	cane	67 5.2000 8. 1000 8. 1
E+2 100 90 60 70 50 50	2736.3	U.ST Cyclohe:	cane	67 5:2982 8:2582
E+2 100 - 90 - 80 - 70 - 50 - 40 -	n	U.31 Cyclohe:	cane	67 6:2998 8:2988
E+2 100 - 90 - 80 - 70 - 50 - 50 - 40 - 30 -	2736.3	Cyclohe	cane	67 6.5885.9 8.653.8
E+2 100 - 90 - 80 - 50 - 50 - 40 - 30 - 20 -		Cyclohe:	cane	2864.4 2865.9 2852.9
E+2 100 90 80 70 60 50 40 30 20 10	2730.3 n : 100	0.31 Cyclohe:	cane	67 5. 2992 8. 2992

Trovare la posizione dei picchi modificando progressivamente il range della scala x del grafico fino a indentificate perfettamente il picco.

Creare una tabella a 2 colonne x_reali e x_misurati, effettuare la regressione lineare con il metodo dei minimi quadrati come visto qui da noi e ricavarsi i coefficienti A e B dell'equazione x_reale=A+B*x_misurata.

Ricavare lo spettro "ridotto"

A questo punto si passa ad analizzare gli spettri veri e propri. Quello che faremo adesso sarà ricavare il cosiddetto spettro "ridotto". Qui di seguito, come esempio, riporto il DNA con spettro centrato a 1500 cm⁻¹. Queste indicazioni potete poi estenderle a tutti gli altri campioni.

Del DNA a 1500 cm-1 abbiamo i files di testo (estensione .txt) DNA_1500_5min_1, DNA_1500_5_min_2 e DNA_1500_5min_3. Importate i file su 3 schede excel trascinando il file sullla finestra del programma excel. Su una quarta finestra excel copiate le tre colonne y di ciascun file. Create una quarta colonna che sarà uguale a

y_media_DNA=(colonna_y1+colonna_y2+colonna_y3)/3 (la media delle tre colonne y).

Utilizzando i parametri A e B della regressione create una colonna con x_reali partendo da una qualunque delle colonne X dei file del DNA (come potete vedere i 3 file hanno le stesse idendiche

colonne x). Ponetela ugale a x_reale=A+B*colonna_x dove al posto di A e B inserite i valoro ottentuti con l'operazione di calibrazione scala.

Fate un grafico con x_reale e y_media

Queto file conterrà anche la cella vuota, che andrà rimossa. Per fare ciò prendete la cella vuota acquisita sulla stessa scala e con lo stesso tempo di acquisizione. Nel nostro caso i file saranno cella_vuota_1500_5min_1, cella_vuota_1500_5min_2, cella_vuota_1500_5min_3. Come fatto per il campione di DNA, ricavate y_media_cella_vuota. Non servirà rifare x_reale. Basterà farla una volta sola, potete usare quella ottentuta prima.

A questo punto dovete sottrarre il comtributo di cella vuota. Create una colonna y_media_finale_DNA=y_media_DNA-y_media_cella_vuota. Graficate x_reale e y_media_finale_DNA. Questo è il vostro grafico ridotto.

Eseguite queste operazioni anche per gli altri campioni e per l'altro range (3000 cm-1).

Attenzione! Come cella vuota utilizzate sempre quella che ha la stessa durata della vostra misura!

Rimuovere i "raggi cosmici"

Noterete che nei vostri grafici vi sono diversi raggi cosmci che rendono la vostra figura in un certo senso "antiestetica". Senza entrare nei dettagli di vari algoritmi di riduzione, vi consiglio una semplice rimozione "manuale" degli stessi. Procedete in questo modo:

1) Fate un grafico con linee e punti. Identidicate il vostro raggio cosmico da rimuovere

2) Selezionate prima l'asse x e poi l'asse x, cambiate la scala in modo da includere solo il picco di interesse

In questo caso sapete che il vostro raggio cosmico è tra 1778 cm-1 e 1780 cm-1

 Modificare il punto selezionato sostituendolo con la media tra i due punti adiacenti , in questo caso 3488=(3497+3479)/2

819	1770.149	3545	
820	1771.94	3555 р	unto da modificare
821	1773.73	3507	
822	1775.521	3410	
823	1777.311	3497	
824	1779.102	4211	
825	1780.891	3479	
826	1782 681	3396	
XIV			
015	1770.149	3545	
820	1770.149	3545 3555	punto modificato
820 821	1770.149 1771.94 1773.73	3545 3555 3507	punto modificato
820 821 822	1770.149 1771.94 1773.73 1775.521	3545 3555 3507 3410	punto modificato
820 821 822 823	1770.149 1771.94 1773.73 1775.521 1777.311	3545 3555 3507 3410 3497	punto modificato
820 821 822 823 82	1770.149 1771.94 1773.73 1775.521 1777.311 1779.102	3545 3555 3507 3410 3497 3488	punto modificato
820 821 822 823 82 825	1770.149 1771.94 1773.73 1775.521 1777.311 1779.102 1780.891	3545 3555 3507 3410 3497 3488 3479	punto modificato

Dopo aver ridotto i files, eseguire le operazioni indicate nelle slides, sia per il range a 1500 che per il range a 3000 cm-1